Exercice 1

La fonction f est définie sur]-1;+ ∞ [par : $f(x) = -2x + 5 + 3\ln(x + 1)$

- 1. a. Calculer la limite de f en -1.
 - **b.** En admettant que $\lim_{x \to +\infty} \frac{\ln(x+1)}{x} = 0$, calculer $\lim_{x \to +\infty} f(x)$.
- **2.** Calculer f'(x) et étudier les variations de f. Dresser le tableau de variation. Préciser la valeur exacte du maximum de f.
- **3.** Tracer les tangentes aux points d'abscisse $0, \frac{1}{2}$ et 4 puis C_f dans un plan muni d'un repère orthonormal $O(i, \frac{1}{i}, \frac{1}{i})$. (unité graphique : 2 cm)
- 4. a. Montrer qu'il existe deux réels α et β tels que :

$$\alpha < 0 < \beta$$
 et $f(\alpha) = f(\beta) = 0$.

- **b.** Donner une valeur approchée à 10^{-2} près par défaut de α et de β . Justifier ces résultats.
- **c.** En déduire le signe de f(x) sur $]-1;+\infty[$.
- 5. Soit g la fonction définie sur]-1;+ ∞ [par : $g(x)=(x+1)\ln(x+1)-x$
 - **a.** Calculer g'(x)
 - **b.** En déduire les variations de la fonction *g*.

Exercice 2

Une école de commerce a effectué une enquête, en Janvier 2000, auprès de ses jeunes diplômés des trois dernières promotions afin de connaître leur insertion professionnelle.

À la première question, trois réponses et trois seulement sont proposées :

A « La personne a une activité professionnelle »

B « La personne poursuit ses études »

C « La personne recherche un emploi ou effectue son service national ».

On a constaté que 60 % des réponses ont été envoyées par des filles.

Dans l'ensemble des réponses reçues, on a relevé les résultats suivants :

- 65 % des filles et 55 % des garçons ont une activité professionnelle ;
- 20 % des filles et 15 % des garçons poursuivent leurs études.
- 1. On prend au hasard la réponse d'un jeune diplômé.
 - a. Montrer que la probabilité qu'il poursuive ses études est égale à 0,18.
 - **b.** Calculer la probabilité qu'il exerce une activité professionnelle.
- **2.** On prend au hasard la réponse d'une personne qui poursuit ses études; quelle est la probabilité que ce soit la réponse d'une fille (on donnera le résultat sous forme fractionnaire) ?

3. On choisit maintenant au hasard et de façon indépendante trois réponses (on suppose que ce choix peut être assimilé à un tirage successif avec remise).

À l'aide d'un arbre pondéré, déterminer la probabilité que l'une au moins des réponses soit celle d'un jeune diplômé poursuivant ses études.

4. Dans l'ensemble des réponses des jeunes diplômés exerçant une activité professionnelle, la répartition des salaires bruts annuels en milliers d'euros est la suivante :

Salaire brut annuel S	20≤S<22	22≤S<26	26≤S<30	30≤S<34	34≤S<38	38≤S<40
Pourcentage	5	15	28	22	20	10

Quel est le salaire brut annuel moyen ?

Exercice 3

Aucun détail des calculs statistiques effectués à la calculatrice n'est demandé dans cet exercice.

Dans un magasin, le nombre annuel de ventes d'un appareil électroménager, relevé pendant 6 années, est donné par le tableau suivant :

Année	1996	1997	1998	1999	2000	2001
Rang de l'année x _i	1	2	3	4	5	6
Nombre d'appareils y _i	623	712	785	860	964	1 073

- 1. a. Représenter dans un repère orthogonal le nuage $M_i(x_i;y_i)$ de points en prenant comme unités graphiques : 2 cm pour 1 rang en abscisses et 1 cm pour 50 appareils en ordonnées, en commençant à la graduation 600.
- **b.** Calculer, en donnant les résultats arrondis à 10⁻², les coordonnées du point moyen G du nuage et placer ce point sur le graphique.
- **2. a.** Calculer, en donnant les résultats arrondis à 10^{-2} , les coordonnées du point moyen G_1 du nuage formé par les points M_1 , M_2 et M_3 , puis les coordonnées du point moyen G_2 du nuage formé par les points M_4 , M_5 et M_6 .
- **b.** Placer les points G_1 et G_2 sur le graphique et déterminer, avec des coefficients arrondis à 10^{-2} , une équation de la droite (G_1G_2) .
- **c.** En utilisant cette droite comme droite d'ajustement affine, déterminer le nombre d'appareils que l'on peut prévoir vendre en 2004.
- **3.** On sait maintenant que le nombre d'appareils vendus en 2002 est de 1 125.
 - **a.** Ajouter le point $M_7(7;1125)$ sur le graphique précédent.
- **b.** On considère alors le nouveau nuage formé des points Mi, $2 \le i \le 7$ (le nombre annuel de ventes de l'année 1996 n'est plus pris en compte).

Donner, à l'aide de la calculatrice, une équation de la droite d'ajustement affine de y en x par la méthode des moindres carrés (les coefficients seront arrondis à 10^{-3}).

c. En utilisant cet ajustement, quel nombre d'appareils peut-on prévoir vendre en 2004 ?